2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations
ثبت نشده
چکیده
In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ f x, y , a x b with associated initial or boundary conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4), which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution. Keywords—Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
منابع مشابه
Block Methods based on Newton Interpolations for Solving Special Second Order Ordinary Differential Equations Directly
This study focused mainly on the derivation of the 2 and 3-point block methods with constant coefficients for solving special second order ordinary differential equations directly based on Newton-Gregory backward interpolation formula. The performance of the new methods was compared with the conventional 1-point method using a standard set of test problems. Numerical results were presented to i...
متن کاملApplication of the block backward differential formula for numerical solution of Volterra integro-differential equations
In this paper, we consider an implicit block backward differentiation formula (BBDF) for solving Volterra Integro-Differential Equations (VIDEs). The approach given in this paper leads to numerical methods for solving VIDEs which avoid the need for special starting procedures. Convergence order and linear stability properties of the methods are analyzed. Also, methods with extensive stability r...
متن کاملImplementation of four-point fully implicit block method for solving ordinary differential equations
This paper describes the development of a four-point fully implicit block method for solving first order ordinary differential equations (ODEs) using variable step size. This method will estimate the solutions of initial value problems (IVPs) at four points simultaneously. The method developed is suitable for the numerical integration of non-stiff and mildly stiff differential systems. The perf...
متن کاملTwo Point Fully Implicit Block Direct Integration Variable Step Method for Solving Higher Order System of Ordinary Differential Equations
Two point fully implicit block method of variable step size is developed for solving directly the second order system of Ordinary Differential Equations (ODEs). This method will estimate the solutions of Initial Value Problems (IVPs) at two points simultaneously. The method developed is suitable for the numerical integration of non stiff and mildly stiff differential systems. Numerical results ...
متن کاملImplementation of parallel three-point block codes for solving large systems of ordinary differential equations
The three-point fully implicit block methods are developed for solving large systems of ordinary differential equations using variable step size on a parallel shared memory computer. The methods calculate the numerical solution at three points simultaneously and are suitable for parallelization across the method. The methods are in a simple form as Adams Moulton method with the specific aim of ...
متن کامل